llgd.net
当前位置:首页 >> spss线性回归结果分析 >>

spss线性回归结果分析

首先来说明各个符号,B也就是beta,代表回归系数,标准化的回归系数代表自变量也就是预测变量和因变量的相关,为什么要标准化,因为标准化的时候各个自变量以及因变量的单位才能统一,使结果更精确,减少因为单位不同而造成的误差。T值就是对回...

拟合程度:调整的R方,0.951,显著; 方程的显著性:Anova方差检验(F检验),P值=0,方差不具有齐性,说明变量存在差异,适合回归; 系数的显著性检验:T检验:常数项的P值=0.956,接受常数项为0的原假设,方程的常数项为0; X的系数检验P值=0...

R平方就是拟合优度指标,代表了回归平方和(方差分析表中的0.244)占总平方和(方差分析表中的0.256)的比例,也称为决定系数。你的R平方值为0.951,表示X可以解释95.1%的Y值,拟合优度很高,尤其是在这么大的样本量(1017对数据点)下更是难得...

F是对回归模型整体的方差检验,所以对应下面的p就是判断F检验是否显著的标准,你的p说明回归模型显著。 R方和调整的R方是对模型拟合效果的阐述,以调整后的R方更准确一些,也就是自变量对因变量的解释率为27.8%。t就是对每个自变量是否有显著作...

你的回归方法是直接进入法 拟合优度R方等于0.678,表示自变量可以解释因变量的67.8%变化,说明拟合优度还可以。 方差检验表中F值对应的概率P值为0.000,小于显著度0.05,因此应拒绝原假设,说明自变量和因变量之间存在显著的线性关系。 参数检验...

R表示的是拟合优度,它是用来衡量估计的模型对观测值的拟合程度。它的值越接近1说明模型越好。但是,你的R值太小了。 T的数值表示的是对回归参数的显著性检验值,它的绝对值大于等于ta/2(n-k)(这个值表示的是根据你的置信水平,自由度得出的数...

B也就是beta,代表回归系数,标准化的回归系数代表自变量也就是预测变量和因变量的相关,为什么要标准化,因为标准化的时候各个自变量以及因变量的单位才能统一,使结果更精确,减少因为单位不同而造成的误差,所以看结果要看标准系数的,非标准...

0.629和3.077是对“常量”、“技术人员密度”两个参数的T检验的值,对应的概率分别是0.534和0.004,如果显著性水平是0.05的话,说明常量不显著,则一元线性回归分析中不应该含有常量。至于0.478是对“技术人员密度”系数的标准化,不用太在意此数字。

首先看 方差分析表 对应的sig 是否小于0.05,如果小于0.05,说明整体回归模型显著,再看下面的回归系数表,如果这里的sig大于0.05,就说明回归模型不显著,下面的就不用再看了。 其次,在回归模型显著的基础上,看调整的R方,是模型拟合度的好坏...

你用的方法是逐步回归分析——是向前选择变量法 和 自后淘汰变量法 的结合 向前选择变量法规则:F=3.84 or Sig = 0.05 自后淘汰变量法规则:F=2.71 or Sig = 0.10 两者结合后,即要使变量不被消去,需F值越大越好,sig值则需小于0.05(拒绝原假设H...

网站首页 | 网站地图
All rights reserved Powered by www.llgd.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com